Losses in Loudspeakers

Claus Futtrup, MSc M.E. Chief Technical Officer

Traditionally loudspeaker designs are simulated with electrical equivalent circuit following the Thiele/S

To see how good or bad the model is let's build a box and measure then compare to simulations.

Test box - essentially
lossless:

3 measurements, compared to 3 simulations (Thiele/

Simulations do not match real-world at all!

Why not?

What shall we do about

it?

Richard Small on Ql, Qp and Qa - conclusions

Qp – between 50 and 100

Qa – typically 100 or more

QI – between 5 and 20

Quote: The last result is surprising, because the enclosure tested well built and appeared to be leak free...

Link to paper (PDF) page 5

Small is looking for an explanation in the system enclosure – but the actual cause shall be found in the transducer.

Quote: ... leads to the conclusion that the measured leakage in apparently leak-free systems is not an error of measurement but an indication that the actual losses in the system enclosure is not constant with frequency... Losses, Ql = 7: A mix of Qa and transducer admittan

Good vs. bad models

The conclusion is valid for all models, also State Variable Models, Finite Element Models, et The end.

Questions?

For more info see: http://www.cfuttrup.com
(I have some "bonus" slides, if we have time)

Transducer model including frequency dependent dampi

Model proposed by Thorborg and Futtrup

Measurements and simulations - using the proposed mo

What does the box model look like?

When the transducer includes frequency dependent dam then the box model must include effects of damping m

Source:

http://www.aes.org/e-lib/browse.cfm?elib=15791

Link: (PDF)

Model of damping material (mechanical domain)

Box mode, Electrical Equivalent, with Rb

Volume expansion graph

Mechanical model 7 Tarnow

$$R_{f} = \lambda = R_{cr}^{2/3} \cdot R_{lr}^{1/3}$$

$$= \frac{16 \cdot \eta}{d_{f}^{2}} \cdot \frac{f}{0,806 \cdot LN(1/f) - 0,929 + 1,26 \cdot f}$$

Thank you.

Questions?

Claus Futtrup

futtrup@seas.no