Research activities in underwater acoustics at NTNU

Hefeng Dong

Department of Electronics and Telecommunications

Acoustics

Underwater Acoustics

Study sound propagation in water column and sea bottom, and interaction with sea surface and sea bottom for

- Detection and localization of target and object in underwater or buried in the seabed
- Seabed characterization
- Underwater acoustic communication
- Underwater positioning and navigation

Underwater Acoustics Research

Acoustic Remote Sensing

- Numerical modeling of sound propagation in fluid, elastic and pore elastic media
- Seabed characterization by model-based geoacoustic inversion
- Passive acoustics: ocean ambient noise, ship & seismic noise

Underwater Acoustic Communication

- Algorithm and acoustic modem design for effective and reliable acoustic communication
- Channel modeling, optimal sensor node positioning and reliable wireless communication between sensor nodes
- Instrumentation and underwater acoustic experiments

Acoustic Remote Sensing for seabed properties

- Shear wave velocity in the sediments
 - Interface waves and ocean ambient noise by horizontal array on/close to the seafloor
- Seismic velocities in the basalt
 - Reflection data by towed horizontal array in the water column
- > P-wave velocity & attenuation in the sediment
 - Pressure data by vertical hydrophone array in the water column

Inversion methods

- Linearized inversion
 - Singular value decomposition
- > Nonlinear inversion
 - Optimization
 - ASSA (adaptive simplex simulated annealing
 - DE (differential evolution)
 - GA (genetic algorithms)
 - Bayesian approach

Bayesian Inversion

- > Bayes' rule: $P(\mathbf{m}|\mathbf{d})P(\mathbf{d}) = P(\mathbf{d}|\mathbf{m})P(\mathbf{m})$
- > MAP (maximum a posteriori) values
- Marginal probability distribution
- > Uncertainty
- ightharpoonup Optimal parameterization: BIC = $2E(\hat{\mathbf{m}}) + M \log_e N$

7

Ocean ambient noise recording

- 196 fiber-optical sensors with 50m spacing
- 2.38 hours recording
- Water depth of 316m 343m

Multi-component noise data

Data processing

- Low-pass filtering (0.68-6 Hz)
- One-bit normalization
- Segmentation (4.5s each segment)
- Cross-correlation and stacking (1720 segments)
- Gathers (30 Green's functions each gather)

Green functions - pressure

Phase-velocity dispersion

Inversion results

Marginal probability profile

Underwater Acoustic Communication

Limitations on underwater communication channel:

- Time-varying
- High dispersive
- Extended multipath
- Bandwidth limited
- Complex bathymetry
- Ambient noise

Channel measurements

Impulse response 202.044 s/frame

Development of real-time single carrier frequency domain Turbo Equalizer

- > Low computational complexity
- > Suitable for quasi-static channel
- > Overall data rate 4 ks/s

Development of underwater OFDM acoustic communication system

- ➤ Time-domain oversampled technique to explore potential Doppler and delay diversity
- ➤ Iterative ICI equalizer and channel estimation to further improve performance
- > OMP sparse channel estimator to explore channel inherent sparsity
- > Real-time system implemented on Multi-core DSP

CPU PROCESSING TIME

Function	Processing time
CFO compensation	0.76 ms
Vector norm calculation	0.101 ms
OMP channel estimation	87.7 ms
ICI equalization & Soft demapper	5.25 ms
SISO decoder	6.77 ms
Soft mapper	0.347 ms
Total time per iteration	101 ms

Channel modeling and optimization

- Underwater acoustic channel modeling for underwater network and vehicle navigation
- Optimization of channel condition for Long Base-Line localization (AUVs)
- Prediction of channel conditions for path planning of underwater vehicles (AUVs)

Underwater Acoustic Communication between nodes

- Underwater communication between different nodes in underwater networks
- Studying different algorithms to optimize the communication performance
- Sea experiments in Trondheim fjord for testing the algorithms

Acoustic Underwater Laboratory – (AUL)

- Low-high freq. transmitters (850Hz, 12kHz & 40 kHz)
- Power amplifier
- 3 broadband vertical hydrophone arrays (8-element for each)
- 32-channel filter
- 24-channel amplifier
- 32-channel data acquisition system
- Autonomous acquisition (stand-alone hydrophones in Spring 2016)
- NTNU research vessel R/V Gunnerus

Instruments

Underwater Communication experiments in Trondheim fjord

Sea experiments performed in Trondheim fjord in the past 6 years with different configurations to test different algorithms for supporting the research and educational program.

Courses in Underwater Acoustics

- Marine Acoustics (Master)
- Acoustic Remote Sensing (Specialization)
- Marine Acoustics II (Specialization, PhD)
- Geoacoustic Modeling and Inversion (PhD)

Acknowledgement

Thanks PhD candidates

- Bo Peng
- Slaman Ijaz Siddiqui

for their contributions to this presentation.