På jakt etter det musikalske øvingsrommet

(Search for the musical rehearsal room)
Abstract

• The dimensions of small rooms are important for the frequency distribution of the room modes.
• Different criteria can be applied to evaluate whether the frequency distribution is favourable; a smooth frequency response, the variance of the interval between modal frequencies, or the number of tones in the musical scale, supported by at least one of the room modes.
• The analysis leads to a practical method for choosing favourable room dimensions in a music room.
Outline

• Normal modes in a rectangular room
• Analysis of smoothness of frequency response
• Analysis of musical tones supported by room modes
• Analysis of frequency spacing between room modes
• Suggested method for choosing room dimensions
Objective criteria for the goodness of a room

• The analysis is restricted to:
 – small room volumes (up to 300 m³)
 – low frequencies (up to 220 Hz)
 – box-shaped rooms, in which the normal modes can easily be calculated

• The criteria considered are:
 – Smoothness of the global transfer function
 – Number of musical tones supported by the room modes
 – Distribution function for the separation between room modes
Normal modes of a rectangular room

Natural frequency of mode \((n_x, n_y, n_z)\):
\[
f_n = \frac{c}{2} \sqrt{\left(\frac{n_x}{l_x}\right)^2 + \left(\frac{n_y}{l_y}\right)^2 + \left(\frac{n_z}{l_z}\right)^2}
\]

Dimension ratio:
\[
1 : \frac{l_y}{l_z} : \frac{l_x}{l_z} = 1 : \frac{W}{H} : \frac{L}{H}
\]
Frequency response - Meissner (2018)

- Looked at the global frequency response curve from 20 Hz to 200 Hz
- Criterion: The curve should be as smooth as possible
- Method: Calculate the correlation coefficient for a 2nd order polynomial.
- The correlation should be as high as possible
- NB: Result depends on the absorption of the surfaces and volume
300 m³ – Meissner (2018) Fig. 6

$$S_x = \frac{L}{H}$$
$$S_y = \frac{W}{H}$$

Optimum ratio:
$$1 : 1.2 : 1.45$$
Optimum ratios:
1 : 1.2 : 1.45
1 : 1.4 : 1.89
1 : 1.47 : 2.1
50 m³ – Meissner (2018) Fig. 7

Optimum ratios:
1 : 1.47 : 2.12
(1 : 2.55 : 3.44)

NB: The upper part of diagram is not usable due to unrealistic low Room height
Nearly optimum range

For usable room heights, the optima are located on a line.

$S_x = L/H = 2$: This is not bad, although often warned against!

The often recommended ratio $1:1.25:1.6$ is not good!
Optimum dimension ratios from Meissner (2018)

Dimension ratios that are found to produce very smooth transfer functions:

A: 1 : 1.2 : 1.45
B: 1 : 1.4 : 1.89
C: 1 : 1.48 : 2.12

Regression line is:

\[\frac{L}{H} = 2.36 \cdot \frac{W}{H} - 1.38 \]

where

- \(L \) is room length,
- \(W \) is room width,
- \(H \) is room height.

The ratio \(W/H \) should be within the range 1.2 to 1.6.
The room as extension to a musical instrument
The room as extension to a musical instrument

$A_0 = 27.5 \text{ Hz}$

$A_3 = 220 \text{ Hz}$

The piano

Example:

150 m3 room with optimum dimensions (A)

31/37 tones are matched with one or more room modes

6 tones are not well supported by the room
The room as extension to a musical instrument

\[A_0 = 27.5 \text{ Hz} \]

\[A_3 = 220 \text{ Hz} \]

The piano

Example:
150 m\(^3\) room with dimension ratio 1:1:1

22/37 tones are matched with one or more room modes

15 tones are not well supported by the room

22/37 tones
150 m³ rooms – Number of tones in 3 octaves

Number of tones within the range A₀ = 27,5 Hz to A₃ = 220 Hz (Max 37)

A, B and C:
Optima from Meissner (2018)

Curve for nearly optimum dimension ratios
50 m³ – Number of tones in 3 octaves

Number of tones within the range A₀ = 27.5 Hz to A₃ = 220 Hz (Max 37)

L/H	1	1.05	1.1	1.15	1.2	1.25	1.3	1.35	1.4	1.45	1.5	1.55	1.6	1.65	1.7	1.75	1.8	1.85	1.9	1.95	2
-------	-----	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------		
W/H	1	1.05	1.1																		

- **Optima from Meissner (2018)**

Curve for nearly optimum dimension ratios
30 m³ – Number of tones in 3 octaves

Number of tones within the range A₀ = 27.5 Hz to A₃ = 220 Hz (Max 37)

A and B: Optima from Meissner (2018)

Curve for nearly optimum dimension ratios
Minimum volume for full coverage

\[V = 1000 \text{ m}^3 \] and room dimension ratio A: 1 : 1.2 : 1.45
Frequency Spacing Index ψ

Definition:

$$
\psi (n) = \frac{1}{f_n - f_1} \cdot \sum_{1}^{n-1} \left(\frac{\delta^2}{\delta} \right)
$$

Where n is the number of modes considered, δ is the frequency difference between one mode and the next.

The average frequency spacing is $\bar{\delta} = \frac{f_n - f_1}{n - 1}$

RMS frequency spacing is: $\delta_{rms} = \sqrt{\psi \ \bar{\delta}}$

$\psi = 1$ is ideal

$\psi = 3.5$ is worst case (a cubic room)

<table>
<thead>
<tr>
<th>n_x</th>
<th>n_y</th>
<th>n_z</th>
<th>f_n [Hz]</th>
<th>δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>26.8</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>32.4</td>
<td>5.6</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>38.9</td>
<td>6.5</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>42.0</td>
<td>3.2</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>47.2</td>
<td>5.2</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>50.6</td>
<td>3.4</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>53.6</td>
<td>3.0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>57.2</td>
<td>3.6</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>62.6</td>
<td>5.4</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>0</td>
<td>64.8</td>
<td>2.1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>66.2</td>
<td>1.4</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>0</td>
<td>70.1</td>
<td>3.9</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>73.7</td>
<td>3.6</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>1</td>
<td>75.5</td>
<td>1.8</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>2</td>
<td>77.7</td>
<td>2.2</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>80.1</td>
<td>2.4</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>80.4</td>
<td>0.3</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>2</td>
<td>82.2</td>
<td>1.8</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0</td>
<td>84.1</td>
<td>1.9</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>84.2</td>
<td>0.1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>86.7</td>
<td>2.5</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>88.4</td>
<td>1.7</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>89.3</td>
<td>0.9</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>92.6</td>
<td>3.3</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>2</td>
<td>94.4</td>
<td>1.8</td>
</tr>
</tbody>
</table>
Bolt (1946)

- Contour for frequency spacing index $\psi_1 < 1.5$.

Problematic to include the ratio $Y = 2$

The frequency validity range does not include the lowest room modes

The findings by Meissner (2018) are within the suggested range

Optima suggested by Meissner (2018)
Frequency Spacing Index ψ of first 25 room modes

Frequency spacing index $\psi(25)$

<table>
<thead>
<tr>
<th>L/H</th>
<th>1.05</th>
<th>1.1</th>
<th>1.15</th>
<th>1.2</th>
<th>1.25</th>
<th>1.3</th>
<th>1.35</th>
<th>1.4</th>
<th>1.45</th>
<th>1.5</th>
<th>1.55</th>
<th>1.6</th>
<th>1.65</th>
<th>1.7</th>
<th>1.75</th>
<th>1.8</th>
<th>1.85</th>
<th>1.9</th>
<th>1.95</th>
<th>2</th>
<th>2.05</th>
<th>2.1</th>
<th>2.15</th>
<th>2.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.8</td>
<td>2.4</td>
<td>2.4</td>
<td>2.7</td>
<td>2.0</td>
<td>1.9</td>
<td>1.8</td>
<td>1.7</td>
<td>1.6</td>
<td>1.7</td>
<td>1.8</td>
<td>2.0</td>
<td>2.1</td>
<td>2.2</td>
<td>2.3</td>
<td>2.5</td>
<td>2.5</td>
<td>2.6</td>
<td>2.7</td>
<td>3.0</td>
<td>3.1</td>
<td>3.0</td>
<td>3.0</td>
<td>3.4</td>
</tr>
<tr>
<td>1.05</td>
<td>2.7</td>
<td>2.0</td>
<td>1.9</td>
<td>1.8</td>
<td>1.7</td>
<td>1.6</td>
<td>1.7</td>
<td>1.8</td>
<td>2.0</td>
<td>2.1</td>
<td>2.2</td>
<td>2.3</td>
<td>2.5</td>
<td>2.5</td>
<td>2.6</td>
<td>2.7</td>
<td>3.0</td>
<td>3.1</td>
<td>3.1</td>
<td>2.9</td>
<td>2.7</td>
<td>2.7</td>
<td>2.8</td>
<td>2.9</td>
</tr>
<tr>
<td>1.1</td>
<td>2.3</td>
<td>1.8</td>
<td>1.6</td>
<td>1.5</td>
<td>1.5</td>
<td>1.6</td>
<td>1.6</td>
<td>1.8</td>
<td>2.0</td>
<td>2.0</td>
<td>2.1</td>
<td>2.1</td>
<td>2.2</td>
<td>2.3</td>
<td>2.4</td>
<td>2.4</td>
<td>2.6</td>
<td>2.6</td>
<td>2.7</td>
<td>2.8</td>
<td>2.8</td>
<td>2.9</td>
<td>2.8</td>
<td>2.9</td>
</tr>
<tr>
<td>1.15</td>
<td>2.3</td>
<td>1.7</td>
<td>1.6</td>
<td>1.5</td>
<td>1.5</td>
<td>1.4</td>
<td>1.6</td>
<td>1.6</td>
<td>1.7</td>
<td>1.9</td>
<td>2.0</td>
<td>1.9</td>
<td>2.0</td>
<td>2.1</td>
<td>2.3</td>
<td>2.7</td>
<td>2.4</td>
<td>2.4</td>
<td>2.5</td>
<td>2.6</td>
<td>2.6</td>
<td>2.7</td>
<td>2.8</td>
<td>2.9</td>
</tr>
<tr>
<td>1.2</td>
<td>2.0</td>
<td>1.6</td>
<td>1.6</td>
<td>1.5</td>
<td>1.4</td>
<td>1.5</td>
<td>1.6</td>
<td>1.6</td>
<td>1.9</td>
<td>1.9</td>
<td>1.9</td>
<td>1.9</td>
<td>1.9</td>
<td>1.8</td>
<td>1.8</td>
<td>2.0</td>
<td>2.2</td>
<td>2.2</td>
<td>2.3</td>
<td>2.3</td>
<td>2.3</td>
<td>2.4</td>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td>1.25</td>
<td>2.0</td>
<td>1.6</td>
<td>1.6</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.7</td>
<td>1.7</td>
<td>1.9</td>
<td>1.7</td>
<td>1.7</td>
<td>1.8</td>
<td>1.8</td>
<td>1.9</td>
<td>2.0</td>
<td>2.0</td>
<td>2.1</td>
<td>2.2</td>
<td>2.2</td>
<td>2.2</td>
<td>2.3</td>
<td>2.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td>2.2</td>
<td>1.8</td>
<td>1.7</td>
<td>1.8</td>
<td>1.6</td>
<td>1.7</td>
<td>1.6</td>
<td>1.7</td>
<td>1.6</td>
<td>1.6</td>
<td>1.7</td>
<td>1.8</td>
<td>1.7</td>
<td>1.9</td>
<td>2.0</td>
<td>2.0</td>
<td>2.1</td>
<td>2.2</td>
<td>2.2</td>
<td>2.2</td>
<td>2.3</td>
<td>2.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.35</td>
<td>2.2</td>
<td>1.9</td>
<td>1.7</td>
<td>1.9</td>
<td>1.9</td>
<td>1.8</td>
<td>1.6</td>
<td>1.6</td>
<td>1.5</td>
<td>1.6</td>
<td>1.6</td>
<td>1.7</td>
<td>1.7</td>
<td>1.7</td>
<td>1.8</td>
<td>1.9</td>
<td>2.0</td>
<td>2.0</td>
<td>2.1</td>
<td>2.1</td>
<td>2.2</td>
<td>2.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.4</td>
<td>2.2</td>
<td>1.8</td>
<td>1.7</td>
<td>1.8</td>
<td>1.8</td>
<td>1.7</td>
<td>1.5</td>
<td>1.4</td>
<td>1.5</td>
<td>1.6</td>
<td>1.7</td>
<td>1.6</td>
<td>1.6</td>
<td>1.7</td>
<td>1.8</td>
<td>1.7</td>
<td>1.9</td>
<td>1.9</td>
<td>2.0</td>
<td>2.1</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.45</td>
<td>2.5</td>
<td>2.0</td>
<td>1.7</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
<td>1.6</td>
<td>1.6</td>
<td>1.5</td>
<td>1.6</td>
<td>1.6</td>
<td>1.7</td>
<td>1.8</td>
<td>1.6</td>
<td>1.6</td>
<td>1.5</td>
<td>1.6</td>
<td>1.6</td>
<td>1.7</td>
<td>1.8</td>
<td>1.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>2.4</td>
<td>1.9</td>
<td>1.8</td>
<td>1.8</td>
<td>1.9</td>
<td>1.7</td>
<td>1.7</td>
<td>1.6</td>
<td>1.7</td>
<td>1.6</td>
<td>1.6</td>
<td>1.7</td>
<td>1.8</td>
<td>1.6</td>
<td>1.6</td>
<td>1.5</td>
<td>1.6</td>
<td>1.6</td>
<td>1.7</td>
<td>1.8</td>
<td>1.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.55</td>
<td>2.3</td>
<td>1.9</td>
<td>1.9</td>
<td>1.8</td>
<td>1.6</td>
<td>1.7</td>
<td>1.8</td>
<td>1.7</td>
<td>1.7</td>
<td>1.6</td>
<td>1.6</td>
<td>1.7</td>
<td>1.6</td>
<td>1.6</td>
<td>1.6</td>
<td>1.5</td>
<td>1.6</td>
<td>1.6</td>
<td>1.7</td>
<td>1.6</td>
<td>1.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.6</td>
<td>2.4</td>
<td>2.0</td>
<td>1.9</td>
<td>1.7</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
<td>1.7</td>
<td>1.6</td>
<td>1.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.65</td>
<td>2.4</td>
<td>2.1</td>
<td>2.0</td>
<td>1.9</td>
<td>1.9</td>
<td>1.9</td>
<td>2.0</td>
<td>1.8</td>
<td>1.8</td>
<td>1.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.7</td>
<td>2.5</td>
<td>2.1</td>
<td>2.1</td>
<td>2.1</td>
<td>2.0</td>
<td>2.0</td>
<td>2.1</td>
<td>1.9</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.75</td>
<td>2.4</td>
<td>2.1</td>
<td>2.1</td>
<td>2.0</td>
<td>2.0</td>
<td>2.1</td>
<td>2.0</td>
<td>1.8</td>
<td>1.7</td>
<td>1.7</td>
<td>1.7</td>
<td>1.7</td>
<td>1.7</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>1.8</td>
<td>2.5</td>
<td>2.2</td>
<td>2.2</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>1.8</td>
<td>1.7</td>
<td>1.7</td>
<td>1.7</td>
<td>1.7</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>1.85</td>
<td>2.6</td>
<td>2.4</td>
<td>2.4</td>
<td>2.2</td>
<td>2.0</td>
<td>1.9</td>
<td>1.8</td>
<td>1.7</td>
<td>1.7</td>
<td>1.7</td>
<td>1.7</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>1.9</td>
<td>2.9</td>
<td>2.7</td>
<td>2.4</td>
<td>2.2</td>
<td>2.1</td>
<td>2.0</td>
<td>1.9</td>
<td>1.8</td>
<td>1.7</td>
<td>1.7</td>
<td>1.7</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>1.95</td>
<td>3.3</td>
<td>2.7</td>
<td>2.4</td>
<td>2.3</td>
<td>2.2</td>
<td>2.2</td>
<td>2.1</td>
<td>2.0</td>
<td>1.9</td>
<td>1.8</td>
<td>1.7</td>
<td>1.7</td>
<td></td>
</tr>
</tbody>
</table>

- **Worst cases**: Circled areas represent the worst cases for the frequency spacing index $\psi(25)$.
- **Best cases**: Non-circled areas represent the best cases for the frequency spacing index $\psi(25)$.
Best – Worst (150 m³ rooms)

Histogram - frequency interval between room modes

1:1.2:1.45

1:1.4:1.85

1:1.1:1

1:1:2
Comparison of three criteria

<table>
<thead>
<tr>
<th></th>
<th>Smoothness</th>
<th>Number of musical tones</th>
<th>Frequency spacing index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Room volume</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Absorption of surfaces</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

- Agreement about three optima,
 - most precise with FSI, less accurate with musical tones
Optimum dimension ratios - Comparison of two methods

Optimum dimension ratios for $V \leq 300 \text{ m}^3$

$y = 2.3558x - 1.3838$

$R^2 = 0.996$

- $\psi \leq 1.3$
- $\psi \leq 1.4$
- $\psi \leq 1.5$

Meissner (2018)
Optimum dimension ratios
- Isometric room sketches

C
1 : 1.48 : 2.12

B
1 : 1.4 : 1.89

A
1 : 1.2 : 1.45
Volume vs. room height

Example: Small ensemble room, $H \geq 3.5$ m
Suggested method for choosing room dimensions

A range of nearly optimum dimension ratios can be applied instead of a few fixed dimension ratios. This is convenient for practical use when there are constraints on room height and volume.

The formula for the regression line is:

$$L/H = 2.36 \cdot W/H - 1.38$$

where

- L is room length,
- W is room width
- H is room height.

The ratio W/H in formula should be within the range 1.2 to 1.6.
Conclusion

• The dimension ratio of a room has significant importance for the frequency distribution of room modes in small rooms.
• Several different “optimum” dimension ratios have been found in the literature.
 – However, nearly optimum dimension ratios can be obtained within a certain range around the optimum.
• Nearly optimum dimension ratios are found close to a linear regression line that establish a relation between L/H and W/H.
 – Using this relation for the room design ensures a nearly optimum dimension ratio with more freedom that using only optimum dimension ratios.
• NB: So far there is no research that show whether or not musicians prefer rooms with optimum dimension ratios.
References

• R.H. Bolt (1946). Note on Normal Frequency Statistics for Rectangular Rooms. JASA 18, 130-133.